

FIGURE 17 Members of the family $x=a+\cos t, y=a \tan t+\sin t$, all graphed in the viewing rectangle $[-4,4]$ by $[-4,4]$

SOLUTION We use a graphing device to produce the graphs for the cases $a=-2,-1$, $-0.5,-0.2,0,0.5,1$, and 2 shown in Figure 17. Notice that all of these curves (except the case $a=0$) have two branches, and both branches approach the vertical asymptote $x=a$ as x approaches a from the left or right.

When $a<-1$, both branches are smooth; but when a reaches -1 , the right branch acquires a sharp point, called a cusp. For a between -1 and 0 the cusp turns into a loop, which becomes larger as a approaches 0 . When $a=0$, both branches come together and form a circle (see Example 2). For a between 0 and 1, the left branch has a loop, which shrinks to become a cusp when $a=1$. For $a>1$, the branches become smooth again, and as a increases further, they become less curved. Notice that the curves with a positive are reflections about the y-axis of the corresponding curves with a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar Nicomedes. He called them conchoids because the shape of their outer branches resembles that of a conch shell or mussel shell.

I-4 Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
I. $x=1+\sqrt{t}, \quad y=t^{2}-4 t, \quad 0 \leqslant t \leqslant 5$
2. $x=2 \cos t, \quad y=t-\cos t, \quad 0 \leqslant t \leqslant 2 \pi$
3. $x=5 \sin t, \quad y=t^{2}, \quad-\pi \leqslant t \leqslant \pi$
4. $x=e^{-t}+t, \quad y=e^{t}-t, \quad-2 \leqslant t \leqslant 2$

5-10
(a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
(b) Eliminate the parameter to find a Cartesian equation of the curve.
5. $x=3 t-5, \quad y=2 t+1$
6. $x=1+t, \quad y=5-2 t, \quad-2 \leqslant t \leqslant 3$
7. $x=t^{2}-2, \quad y=5-2 t, \quad-3 \leqslant t \leqslant 4$
8. $x=1+3 t, \quad y=2-t^{2}$
9. $x=\sqrt{t}, \quad y=1-t$
10. $x=t^{2}, \quad y=t^{3}$

11-18
(a) Eliminate the parameter to find a Cartesian equation of the curve.
(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.
II. $x=\sin \theta, \quad y=\cos \theta, \quad 0 \leqslant \theta \leqslant \pi$
12. $x=4 \cos \theta, \quad y=5 \sin \theta, \quad-\pi / 2 \leqslant \theta \leqslant \pi / 2$
[13. $x=\sin t, \quad y=\csc t, \quad 0<t<\pi / 2$
14. $x=e^{t}-1, \quad y=e^{2 t}$
15. $x=e^{2 t}, \quad y=t+1$
16. $x=\ln t, \quad y=\sqrt{t}, \quad t \geqslant 1$
17. $x=\sinh t, \quad y=\cosh t$
18. $x=2 \cosh t, \quad y=5 \sinh t$

19-22 Describe the motion of a particle with position (x, y) as t varies in the given interval.
19. $x=3+2 \cos t, \quad y=1+2 \sin t, \quad \pi / 2 \leqslant t \leqslant 3 \pi / 2$
20. $x=2 \sin t, \quad y=4+\cos t, \quad 0 \leqslant t \leqslant 3 \pi / 2$
21. $x=5 \sin t, \quad y=2 \cos t, \quad-\pi \leqslant t \leqslant 5 \pi$
22. $x=\sin t, \quad y=\cos ^{2} t, \quad-2 \pi \leqslant t \leqslant 2 \pi$
23. Suppose a curve is given by the parametric equations $x=f(t)$, $y=g(t)$, where the range of f is $[1,4]$ and the range of g is $[2,3]$. What can you say about the curve?
24. Match the graphs of the parametric equations $x=f(t)$ and $y=g(t)$ in (a)-(d) with the parametric curves labeled I-IV. Give reasons for your choices.
(a)

(b)

(c)

(d)

I

II

III

IV

25-27 Use the graphs of $x=f(t)$ and $y=g(t)$ to sketch the parametric curve $x=f(t), y=g(t)$. Indicate with arrows the direction in which the curve is traced as t increases.
25.

26.

27.

28. Match the parametric equations with the graphs labeled I-VI. Give reasons for your choices. (Do not use a graphing device.)
(a) $x=t^{4}-t+1, \quad y=t^{2}$
(b) $x=t^{2}-2 t, \quad y=\sqrt{t}$
(c) $x=\sin 2 t, \quad y=\sin (t+\sin 2 t)$
(d) $x=\cos 5 t, \quad y=\sin 2 t$
(e) $x=t+\sin 4 t, \quad y=t^{2}+\cos 3 t$
(f) $x=\frac{\sin 2 t}{4+t^{2}}, \quad y=\frac{\cos 2 t}{4+t^{2}}$

I

II

III

IV

V

VI

29. Graph the curve $x=y-3 y^{3}+y^{5}$.

ت30. Graph the curves $y=x^{5}$ and $x=y(y-1)^{2}$ and find their points of intersection correct to one decimal place.

3I. (a) Show that the parametric equations

$$
x=x_{1}+\left(x_{2}-x_{1}\right) t \quad y=y_{1}+\left(y_{2}-y_{1}\right) t
$$

where $0 \leqslant t \leqslant 1$, describe the line segment that joins the points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$.
(b) Find parametric equations to represent the line segment from $(-2,7)$ to $(3,-1)$.
32. Use a graphing device and the result of Exercise 31(a) to draw the triangle with vertices $A(1,1), B(4,2)$, and $C(1,5)$.
33. Find parametric equations for the path of a particle that moves along the circle $x^{2}+(y-1)^{2}=4$ in the manner described.
(a) Once around clockwise, starting at $(2,1)$
(b) Three times around counterclockwise, starting at $(2,1)$
(c) Halfway around counterclockwise, starting at $(0,3)$
34. (a) Find parametric equations for the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$. [Hint: Modify the equations of the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse when $a=3$ and $b=1,2,4$, and 8.
(c) How does the shape of the ellipse change as b varies?
\#35-36 Use a graphing calculator or computer to reproduce the picture.
35.

36.

37-38 Compare the curves represented by the parametric equations. How do they differ?
37. (a) $x=t^{3}, \quad y=t^{2}$
(b) $x=t^{6}, \quad y=t^{4}$
(c) $x=e^{-3 t}, \quad y=e^{-2 t}$
38. (a) $x=t, \quad y=t^{-2}$
(b) $x=\cos t, \quad y=\sec ^{2} t$
(c) $x=e^{t}, \quad y=e^{-2 t}$
39. Derive Equations 1 for the case $\pi / 2<\theta<\pi$.
40. Let P be a point at a distance d from the center of a circle of radius r. The curve traced out by P as the circle rolls along a straight line is called a trochoid. (Think of the motion of a point on a spoke of a bicycle wheel.) The cycloid is the special case of a trochoid with $d=r$. Using the same parameter θ as for the cycloid and, assuming the line is the x-axis and $\theta=0$ when P is at one of its lowest points, show that parametric equations of the trochoid are

$$
x=r \theta-d \sin \theta \quad y=r-d \cos \theta
$$

Sketch the trochoid for the cases $d<r$ and $d>r$.
41. If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle θ as the parameter. Then eliminate the parameter and identify the curve.

42. If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle θ as the parameter. The line segment $A B$ is tangent to the larger circle.

43. A curve, called a witch of Maria Agnesi, consists of all possible positions of the point P in the figure. Show that parametric equations for this curve can be written as

$$
x=2 a \cot \theta \quad y=2 a \sin ^{2} \theta
$$

Sketch the curve.

44. (a) Find parametric equations for the set of all points P as shown in the figure such that $|O P|=|A B|$. (This curve is called the cissoid of Diocles after the Greek scholar Diocles, who introduced the cissoid as a graphical method for constructing the edge of a cube whose volume is twice that of a given cube.)
(b) Use the geometric description of the curve to draw a rough sketch of the curve by hand. Check your work by using the parametric equations to graph the curve.
45. Suppose that the position of one particle at time t is given by

$$
x_{1}=3 \sin t \quad y_{1}=2 \cos t \quad 0 \leqslant t \leqslant 2 \pi
$$

and the position of a second particle is given by

$$
x_{2}=-3+\cos t \quad y_{2}=1+\sin t \quad 0 \leqslant t \leqslant 2 \pi
$$

(a) Graph the paths of both particles. How many points of intersection are there?
(b) Are any of these points of intersection collision points? In other words, are the particles ever at the same place at the same time? If so, find the collision points.
(c) Describe what happens if the path of the second particle is given by

$$
x_{2}=3+\cos t \quad y_{2}=1+\sin t \quad 0 \leqslant t \leqslant 2 \pi
$$

46. If a projectile is fired with an initial velocity of v_{0} meters per second at an angle α above the horizontal and air resistance is assumed to be negligible, then its position after t seconds is
given by the parametric equations

$$
x=\left(v_{0} \cos \alpha\right) t \quad y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}
$$

where g is the acceleration due to gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$.
(a) If a gun is fired with $\alpha=30^{\circ}$ and $v_{0}=500 \mathrm{~m} / \mathrm{s}$, when will the bullet hit the ground? How far from the gun will it hit the ground? What is the maximum height reached by the bullet?
(b) Use a graphing device to check your answers to part (a). Then graph the path of the projectile for several other values of the angle α to see where it hits the ground. Summarize your findings.
(c) Show that the path is parabolic by eliminating the parameter.

Investigate the family of curves defined by the parametric equations $x=t^{2}, y=t^{3}-c t$. How does the shape change as c increases? Illustrate by graphing several members of the family.48. The swallowtail catastrophe curves are defined by the parametric equations $x=2 c t-4 t^{3}, y=-c t^{2}+3 t^{4}$. Graph several of these curves. What features do the curves have in common? How do they change when c increases?
449. The curves with equations $x=a \sin n t, y=b \cos t$ are called Lissajous figures. Investigate how these curves vary when a, b, and n vary. (Take n to be a positive integer.)
50. Investigate the family of curves defined by the parametric equations $x=\cos t, y=\sin t-\sin c t$, where $c>0$. Start by letting c be a positive integer and see what happens to the shape as c increases. Then explore some of the possibilities that occur when c is a fraction.

TEC Look at Module 10.1B to see how hypocycloids and epicycloids are formed by the motion of rolling circles.

RUNNING CIRCLES AROUND CIRCLES

In this project we investigate families of curves, called hypocycloids and epicycloids, that are generated by the motion of a point on a circle that rolls inside or outside another circle.
I. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on the inside of a circle with center O and radius a. Show that if the initial position of P is $(a, 0)$ and the parameter θ is chosen as in the figure, then parametric equations of the hypocycloid are

$$
x=(a-b) \cos \theta+b \cos \left(\frac{a-b}{b} \theta\right) \quad y=(a-b) \sin \theta-b \sin \left(\frac{a-b}{b} \theta\right)
$$

2. Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs of hypocycloids with a a positive integer and $b=1$. How does the value of a affect the graph? Show that if we take $a=4$, then the parametric equations of the hypocycloid reduce to

$$
x=4 \cos ^{3} \theta \quad y=4 \sin ^{3} \theta
$$

This curve is called a hypocycloid of four cusps, or an astroid.
3. Now try $b=1$ and $a=n / d$, a fraction where n and d have no common factor. First let $n=1$ and try to determine graphically the effect of the denominator d on the shape of the graph. Then let n vary while keeping d constant. What happens when $n=d+1$?
4. What happens if $b=1$ and a is irrational? Experiment with an irrational number like $\sqrt{2}$ or $e-2$. Take larger and larger values for θ and speculate on what would happen if we were to graph the hypocycloid for all real values of θ.
5. If the circle C rolls on the outside of the fixed circle, the curve traced out by P is called an epicycloid. Find parametric equations for the epicycloid.
6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2-4.

CALCULUS WITH PARAMETRIC CURVES

Having seen how to represent curves by parametric equations, we now apply the methods of calculus to these parametric curves. In particular, we solve problems involving tangents, area, arc length, and surface area.

TANGENTS

In the preceding section we saw that some curves defined by parametric equations $x=f(t)$ and $y=g(t)$ can also be expressed, by eliminating the parameter, in the form $y=F(x)$. (See Exercise 67 for general conditions under which this is possible.) If we substitute $x=f(t)$ and $y=g(t)$ in the equation $y=F(x)$, we get

$$
g(t)=F(f(t))
$$

and so, if g, F, and f are differentiable, the Chain Rule gives

$$
g^{\prime}(t)=F^{\prime}(f(t)) f^{\prime}(t)=F^{\prime}(x) f^{\prime}(t)
$$

If $f^{\prime}(t) \neq 0$, we can solve for $F^{\prime}(x)$:

$$
\begin{equation*}
F^{\prime}(x)=\frac{g^{\prime}(t)}{f^{\prime}(t)} \tag{1}
\end{equation*}
$$

Since the slope of the tangent to the curve $y=F(x)$ at $(x, F(x))$ is $F^{\prime}(x)$, Equation 1 enables us to find tangents to parametric curves without having to eliminate the parameter. Using Leibniz notation, we can rewrite Equation 1 in an easily remembered form:

If we think of a parametric curve as being traced out by a moving particle, then $d y / d t$ and $d x / d t$ are the vertical and horizontal velocities of the particle and Formula 2 says that the slope of the tangent is the ratio of these velocities.

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0 \tag{2}
\end{equation*}
$$

It can be seen from Equation 2 that the curve has a horizontal tangent when $d y / d t=0$ (provided that $d x / d t \neq 0$) and it has a vertical tangent when $d x / d t=0$ (provided that $d y / d t \neq 0)$. This information is useful for sketching parametric curves.

