
SOLUTION We use a graphing device to produce the graphs for the cases , ,
, , , , , and shown in Figure 17. Notice that all of these curves (except

the case ) have two branches, and both branches approach the vertical asymptote
as approaches from the left or right.

When , both branches are smooth; but when reaches , the right branch
acquires a sharp point, called a cusp. For between and 0 the cusp turns into a loop,
which becomes larger as approaches 0. When , both branches come together and
form a circle (see Example 2). For between 0 and 1, the left branch has a loop, which
shrinks to become a cusp when . For , the branches become smooth again,
and as increases further, they become less curved. Notice that the curves with posi-
tive are reflections about the -axis of the corresponding curves with negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell. M
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11–18
(a) Eliminate the parameter to find a Cartesian equation of the

curve.
(b) Sketch the curve and indicate with an arrow the direction in

which the curve is traced as the parameter increases.
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y ! 2 " t 2x ! 1 % 3t1–4 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as increases.
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5–10
(a) Sketch the curve by using the parametric equations to plot

points. Indicate with an arrow the direction in which the curve
is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of 
the curve.
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FIGURE 17 Members of the family
x=a+cos t, y=a tan t+sin t,
all graphed in the viewing rectangle
"_4, 4# by "_4, 4#



25–27 Use the graphs of and to sketch the
parametric curve , . Indicate with arrows the
direction in which the curve is traced as increases.
25.

26.

27.

28. Match the parametric equations with the graphs labeled I-VI.
Give reasons for your choices. (Do not use a graphing
device.)
(a) ,
(b) ,
(c) ,
(d) ,
(e) ,

(f) ,

; 29. Graph the curve .

; 30. Graph the curves and and find their
points of intersection correct to one decimal place.
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y ! t$t%x ! f $t%

y ! t$t%x ! f $t%18. ,

19–22 Describe the motion of a particle with position as 
varies in the given interval.

19. , ,

20. , ,

, ,

22. , ,

23. Suppose a curve is given by the parametric equations ,
, where the range of is and the range of is

. What can you say about the curve?

24. Match the graphs of the parametric equations and
in (a)–(d) with the parametric curves labeled I–IV.

Give reasons for your choices.
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If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point 
in the figure, using the angle as the parameter. Then elimi-
nate the parameter and identify the curve.

42. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point 
in the figure, using the angle as the parameter. The line seg-
ment is tangent to the larger circle.

43. A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point in the figure. Show that para-
metric equations for this curve can be written as 

Sketch the curve.

44. (a) Find parametric equations for the set of all points as
shown in the figure such that . (This curve
is called the cissoid of Diocles after the Greek scholar
Diocles, who introduced the cissoid as a graphical method
for constructing the edge of a cube whose volume is twice
that of a given cube.)
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ba41.(a) Show that the parametric equations

where , describe the line segment that joins the
points and .

(b) Find parametric equations to represent the line segment
from to .

; 32. Use a graphing device and the result of Exercise 31(a) to
draw the triangle with vertices , , and .

Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse when

and b ! 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

; 35–36 Use a graphing calculator or computer to reproduce the
picture.

35. 36.

37–38 Compare the curves represented by the parametric equa-
tions. How do they differ?

37. (a) , (b) ,
(c) ,

38. (a) , (b) ,
(c) ,

39. Derive Equations 1 for the case .

40. Let be a point at a distance from the center of a circle of
radius . The curve traced out by as the circle rolls along a
straight line is called a trochoid. (Think of the motion of a
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of a trochoid with . Using the same parameter

as for the cycloid and, assuming the line is the -axis and
when is at one of its lowest points, show that 

parametric equations of the trochoid are

Sketch the trochoid for the cases and .d ! rd # r
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given by the parametric equations

where is the acceleration due to gravity ( m!s ).
(a) If a gun is fired with and m!s, when 

will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached 
by the bullet?

; (b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other 
values of the angle to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; Investigate the family of curves defined by the parametric
equations , . How does the shape change 
as increases? Illustrate by graphing several members of the
family.

; 48. The swallowtail catastrophe curves are defined by the para-
metric equations , . Graph 
several of these curves. What features do the curves have 
in common? How do they change when increases?

; The curves with equations , are
called Lissajous figures. Investigate how these curves vary
when , , and vary. (Take to be a positive integer.)

; 50. Investigate the family of curves defined by the parametric
equations , , where . Start 
by letting be a positive integer and see what happens to the
shape as increases. Then explore some of the possibilities
that occur when is a fraction.c
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(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.

; 45. Suppose that the position of one particle at time is given by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place at
the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

46. If a projectile is fired with an initial velocity of meters per
second at an angle above the horizontal and air resistance
is assumed to be negligible, then its position after seconds is t
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In this project we investigate families of curves, called hypocycloids and epicycloids, that are
generated by the motion of a point on a circle that rolls inside or outside another circle.

1. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on
the inside of a circle with center O and radius a. Show that if the initial position of P is 
and the parameter is chosen as in the figure, then parametric equations of the hypocycloid
are

2. Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs
of hypocycloids with a a positive integer and b ! 1. How does the value of a affect the graph?
Show that if we take a ! 4, then the parametric equations of the hypocycloid reduce to

This curve is called a hypocycloid of four cusps, or an astroid.
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Look at Module 10.1B to see how
hypocycloids and epicycloids are formed by 
the motion of rolling circles.

TEC
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3. Now try b ! 1 and , a fraction where n and d have no common factor. First let n ! 1
and try to determine graphically the effect of the denominator d on the shape of the graph.
Then let n vary while keeping d constant. What happens when ?

4. What happens if and is irrational? Experiment with an irrational number like 
or . Take larger and larger values for and speculate on what would happen if we

were to graph the hypocycloid for all real values of .

5. If the circle rolls on the outside of the fixed circle, the curve traced out by is called an
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.
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CALCULUS WITH PARAMETRIC CURVES

Having seen how to represent curves by parametric equations, we now apply the methods
of calculus to these parametric curves. In particular, we solve problems involving tangents,
area, arc length, and surface area.

TANGENTS

In the preceding section we saw that some curves defined by parametric equations 
and can also be expressed, by eliminating the parameter, in the form .
(See Exercise 67 for general conditions under which this is possible.) If we substitute

and in the equation , we get

and so, if , , and are differentiable, the Chain Rule gives

If , we can solve for :

Since the slope of the tangent to the curve at is , Equation 1
enables us to find tangents to parametric curves without having to eliminate the parameter.
Using Leibniz notation, we can rewrite Equation 1 in an easily remembered form:

It can be seen from Equation 2 that the curve has a horizontal tangent when 
(provided that ) and it has a vertical tangent when (provided that

). This information is useful for sketching parametric curves.dy!dt " 0
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10.2

N If we think of a parametric curve as being
traced out by a moving particle, then and

are the vertical and horizontal velocities
of the particle and Formula 2 says that the slope
of the tangent is the ratio of these velocities.

dx!dt
dy!dt


